Improved Option Pricing Using Artificial Neural Networks and Bootstrap Methods

نویسندگان

  • Paul Lajbcygier
  • Jerome T. Connor
چکیده

A hybrid neural network is used to predict the difference between the conventional option-pricing model and observed intraday option prices for stock index option futures. Confidence intervals derived with bootstrap methods are used in a trading strategy that only allows trades outside the estimated range of spurious model fits to be executed. Whilst hybrid neural network option pricing models can improve predictions they have bias. The hybrid option-pricing bias can be reduced with bootstrap methods. A modified bootstrap predictor is indexed by a parameter that allows the predictor to range from a pure bootstrap predictor, to a hybrid predictor, and finally the bagging predictor. The modified bootstrap predictor outperforms the hybrid and bagging predictors. Greatly improved performance was observed on the boundary of the training set and where only sparse training data exists. Finally, bootstrap bias estimates were studied.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical arbitrage trading with wavelets and artificial neural networks

The paper outlines the use of an altemative option pricing scheme to perform statistical arbitrage in derivative markets. The method links a binomial tree to an innovative stochastic volatility model that is based on wavelets and artificial neural networks. Wavelets provide a convenient signalhoise decomposition of volatility in a non-linear feature space. Neural networks are used to infer futu...

متن کامل

Introduce an Optimal Pricing Strategy Using the Parameter of "Contingency Analysis" Neplan Software in the Power MarketCase Study (Azerbaijan Electricity Network)

Overall price optimization strategy in the deregulated electricity market is one of the most important challenges for the participants, In this paper, we used Contingency Analysis Module of NEPLAN Software, a strategy of pricing to market participants is depicted.Each of power plants according to their size and share of the Contingency Analysis should be considered in the price of its hour. In ...

متن کامل

Monitoring of Regional Low-Flow Frequency Using Artificial Neural Networks

Ecosystem of arid and semiarid regions of the world, much of the country lies in the sensitive and fragile environment Canvases are that factors in the extinction and destruction are easily destroyed in this paper, artificial neural networks (ANNs) are introduced to obtain improved regional low-flow estimates at ungauged sites. A multilayer perceptron (MLP) network is used to identify the funct...

متن کامل

Steel Consumption Forecasting Using Nonlinear Pattern Recognition Model Based on Self-Organizing Maps

Steel consumption is a critical factor affecting pricing decisions and a key element to achieve sustainable industrial development. Forecasting future trends of steel consumption based on analysis of nonlinear patterns using artificial intelligence (AI) techniques is the main purpose of this paper. Because there are several features affecting target variable which make the analysis of relations...

متن کامل

Artificial Neural Networks for Valuation of Financial Derivatives and Customized Option Embedded Contracts

In this paper we propose and test a valuation methodology for improving the efficiency of contingent claims pricing using Artificial Neural Networks (ANN). Contingent claims is by now a standard method for pricing under uncertainty nonlinear (option embedded) contracts, for both financial options (standardized or customized) and real (investment) opportunities. In the presence of liquid option ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of neural systems

دوره 8 4  شماره 

صفحات  -

تاریخ انتشار 1997